top of page
  • AIM Team

Case hardening basics: Nitrocarburizing vs. carbonitriding


The terms sound alike and often cause confusion, but nitrocarburizing and carbonitriding are distinct heat treating processes that each have their advantages depending on the material used and the intended finished quality of a part.

About the author


Case hardening basics: Nitrocarburizing vs. carbonitriding

Confusion surrounding the case hardening techniques of nitrocarburizing and carbonitriding prove the point that it’s easy to get lost in the nomenclature behind heat treating processes.  

That comes with the territory. Metallurgy is complicated.

But there’s value to explaining the differences between these techniques and the benefits that result from their use, including cutting down on the confusion to help manufacturers better understand what goes on in the heat treater’s furnaces.

unnamed (2).jpg

Case hardening

Case hardening refers to the “case” that develops around a part that is subjected to a hardening treatment. Nitrocarburizing and carbonitriding both make a workpiece surface harder by imparting carbon, or carbon and nitrogen, to its surface.

Material, part specs and intended uses dictate whether nitrocarburizing or carbonitriding is the best case hardening method.


During carbonitriding, parts are heated in a sealed chamber well into the austenitic range—around 1600 degrees Fahrenheit—before nitrogen and carbon are added. Because the part is heated into the austenitic range, a phase change in the steel’s crystal structure occurs that allows carbon and nitrogen atoms to diffuse into the part.

Nitrogen is added to low-carbon, low-alloy steels because they don’t harden well without the boost the nitrogen provides. The nitrogen comes in the form of ammonia gas molecules that crack apart on the surface of the part to provide nitrogen that diffuses into the steel. Adding nitrogen also helps a part maintain hardness during use in high-temperature operational conditions.

Carbonitriding typically achieves greater case depths compared to nitrocarburizing. There’s no theoretical limit to how deep a case can be achieved in either process, but a practical limit is the time and resources one is willing to spend to achieve certain case depths.

The carbonitriding process takes from a few hours up to a day or more to achieve the desired results: a part with high surface hardness but with a relatively ductile core. The process concludes with a quench.

Carbonitriding is used to harden surfaces of parts made of relatively less expensive and easily-machined steels, like stamped automotive parts or wood screws. The process makes parts more resistant to wear and increases fatigue strength.


Nitrocarburizing also entails the dissolution of carbon and nitrogen into a workpiece, but, compared to carbonitriding, more nitrogen is used in nitrocarburizing. There are two forms of nitrocarburizing: austenitic and ferritic.

Austenitic nitrocarburizing refers to the temperature of the nitrogen-enriched zone at the surface of a part. A phase change occurs in that zone, allowing the nitrogen to diffuse. Ferritic nitrocarburizing is conducted at a lower temperature where no phase change occurs.

Case depths as a result of nitrocarburizing are typically more shallow compared to carbonitriding.

Ferritic nitrocarburizing is unique in that it offers case hardening without the need to heat metal parts into a phase change (it’s done at between 975 and 1,125 degrees Fahrenheit). Within that temperature range, nitrogen atoms are soluble in iron but the risk of distortion is decreased. Due to their shape and size, carbon atoms cannot diffuse into the part in this low-temperature process.

Workpieces improved by nitrocarburizing include drive train components in automobiles and heavy equipment, firearm components like barrels and slides and dies for manufacturing processes.

Nitrocarburizing decreases the potential for corrosion in parts and enhances their appearance. The process generally takes only a few hours.

Knowledge is power

The nitrocarburizing and carbonitriding processes can be complicated, but they’re also critical to ensuring parts can stand up to the environments in which they’ll be used. By learning more about these and other heat treating processes, you’re taking a big step toward more productive future discussions and a stronger relationship with your heat treatment partner.

bottom of page